Labeling Examples That Matter: Relevance-Based Active Learning with Gaussian Processes
نویسندگان
چکیده
Active learning is an essential tool to reduce manual annotation costs in the presence of large amounts of unsupervised data. In this paper, we introduce new active learning methods based on measuring the impact of a new example on the current model. This is done by deriving model changes of Gaussian process models in closed form. Furthermore, we study typical pitfalls in active learning and show that our methods automatically balance between the exploitation and the exploration trade-off. Experiments are performed with established benchmark datasets for visual object recognition and show that our new active learning techniques are able to outperform state-of-the-art methods.
منابع مشابه
Fast Active Exploration for Link-Based Preference Learning Using Gaussian Processes
In preference learning, the algorithm observes pairwise relative judgments (preference) between items as training data for learning an ordering of all items. This is an important learning problem for applications where absolute feedback is difficult to elicit, but pairwise judgments are readily available (e.g., via implicit feedback [13]). While it was already shown that active learning can eff...
متن کاملLeveraging Active Learning for Relevance Feedback Using an Information Theoretic Diversity Measure
Interactively learning from a small sample of unlabeled examples is an enormously challenging task. Relevance feedback and more recently active learning are two standard techniques that have received much attention towards solving this interactive learning problem. How to best utilize the user’s effort for labeling, however, remains unanswered. It has been shown in the past that labeling a dive...
متن کاملPredicting Ground-based Aerosol Optical Depth with Satellite Images Via Gaussian Processes
A Gaussian process regression technique is proposed to predict ground-based aerosol optical depth measurements from satellite multispectral images, and to select the most informative ground-based sites by active learning. Satellite images provide spatial and temporal information in addition to the spectral features, and such heterogeneity of available features is captured in the Gaussian proces...
متن کاملExtensions of Gaussian Processes for Ranking: Semi-supervised and Active Learning
Unlabelled examples in supervised learning tasks can be optimally exploited using semi-supervised methods and active learning. We focus on ranking learning from pairwise instance preference to discuss these important extensions, semi-supervised learning and active learning, in the probabilistic framework of Gaussian processes. Numerical experiments demonstrate the capacities of these techniques.
متن کاملA Two-stage active learning method for learning to rank
Learning to rank (L2R) algorithms use a labeled training set to generate a ranking model that can later be used to rank new query results. These training sets are costly and laborious to produce, requiring human annotators to assess the relevance or order of the documents in relation to a query. Active learning algorithms are able to reduce the labeling effort by selectively sampling an unlabel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013